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Abstract: Histone deacetylase (HDAC) inhibitors have potential for
cancer therapy. An HDAC inhibitor based on a cyclic peptide mimic
of known structure, linked by an aliphatic chain to a hydroxamic acid,
was designed and synthesized. The chimeric compound showed potent
competitive inhibition of nuclear HDACs, with an IC50 value of 46
nM and aKi value of 13.7 nM. The designed inhibitor showed 4-fold
selectivity for HDAC1 (57 nM) over HDAC8 (231 nM).

DNA is assembled into nucleosomes, which are the funda-
mental repeating subunits of all eukaryotic chromatin. Nucleo-
somes are made up of DNA (146 base pairs) wrapped around
an octamer of histones.1 Post-translational modification of the
N-terminal tails of the histones, including acetylation, phos-
phorylation, and methylation, alter the chromatin structure and
regulate gene transcription.2 Histones can exist in two forms,
acetylated and deacetylated, which are controlled by histone
acetyltransferases (HATsa) and histone deacetylases (HDACs).
HDACs are divided into three classes based on mechanism,3

of which classes I and II are therapeutic targets for the treatment
of leukemia4 and solid tumors.5,6 Recent studies have shown
that inhibition of HDACs silences the growth of tumor cells
by introducing terminal differentiation, growth arrest, and
apoptosis.7,8 Quite a few inhibitors are in phase I or II clinical
trials:9 suberoylanilide hydroxamic acid (SAHA),10 butyrate,11

4-(acetylamino)-N-(2-aminophenyl) benzamide (CI-994),12,13

and cyclo[(2Z)-2-amino-2-butenoyl-L-valyl-(3S,4E)-3-hydroxy-
7-mercapto-4-heptenoyl-D-valyl-D-cysteinyl], cyclic (3f5)-di-
sulfide (FK228).14

Many HDAC inhibitors have been reported, both naturally
occurring, such as trichostatin A (TSA),15 apicidin,16 and
trapoxin,17 and synthetic, such as SAHA18 (Figure 1). These
HDAC inhibitors can be divided into categories according to
their structural characteristics, such as hydroxamates, carbox-
ylates, benzamides, and cyclic peptides, though most are
hydroxamic acid derivatives.19 We have shown that charged
phosphorus-based compounds are poor inhibitors of HDACs,20

which may distinguish the mechanism of HDAC-catalyzed
deacetylation from that of zinc protease amide hydrolysis.21

Based on SAR studies, efficient HDAC inhibitors should have
three features: (1) a hydrophobic region that binds the rim of
the active site and blocks the entrance, (2) a coordinating group

to chelate to Zn2+ at the bottom of the tubular pocket, and (3)
a five- to seven-atom linker from the hydrophobic region to
the coordinating group.19 The linker helps insert the hydroxamic
acid into the bottom of the tubular active site.

Most inhibitors exhibit IC50 values against HDACs in the
micromolar range.19 However, some inhibitors containing a large
active site rim recognition element, such as trapoxin, apicidin,16

and cyclic tetrapeptides,22-24 give nanomolar IC50 values against
HDACs. The high potency of these tetrapeptides suggested that
introduction of a macrocycle into an HDAC inhibitor would be
promising.

HDAC inhibitor (HDI) 1 was designed based on a cyclic
peptide mimic previously synthesized in our lab.25 We have
investigated alternative phosphorus-containing head groups for
HDAC inhibitors and found them deficient, so we chose the
hydroxamic acid head group.20 Combining the cyclic peptide
mimic with the hydroxamic acid functionality not only retained
the hydrophobic property of the cyclic peptide mimic, but also
introduced the linker and zinc-binding functional group into the
targeted molecule1. The three-dimensional structure of the
cyclic peptide mimic was determined by NMR in previous
work.26 In the molecular modeling, the known 3-D structure of
the cyclic peptide mimic26 was attached to the linker and
hydroxamic acid of SAHA from the cocrystal structure with
the bacterial histone deacetylase-like protein (HDLP),27 which
is similar to class I HDACs.28 Compound1 was docked
manually by superposition onto SAHA in the HDLP active site.
Several conformers around the CR-Câ torsion were minimized
in the active site using Sybyl 7.1 (Tripos Associates, see
Supporting Information).

Molecular visualization shows that there are several pockets
on the HDLP surface (Figure 2). The surface around the entrance
to the active site is mostly nonpolar. The aromatic group and
the 12-membered ring of compound1 were predicted to make
good contacts with the enzyme surface recognition site, and the
hydroxamic acid group is known to bind tightly to Zn2+. The
results of the computational study indicated that the designed
peptide mimic would be an efficient HDAC inhibitor. Because
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a Abbreviations: DPPA, diphenylphosphoryl azide; FDDP, pentafluoro-
phenyl diphenyl phosphate; HAT, histone acetyl transferase; HATU,O-(7-
azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate;
HBTU, O-benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium hexafluorophos-
phate; HDAC, histone deacetylase; HDI, histone deacetylase inhibitor;
HDLP, histone deacetylase like protein; HOAt, 1-hydroxy-7-azabenzotri-
azole; HOBt, hydroxybenzotriazole; PyAOP, (7-azabenzotriazol-1-yloxy)
tripyrrolidino-phosphonium hexafluorophosphate; SAHA, suberoylanilide
hydroxamic acid; TBAF, 1-tetra-n-butyl ammonium fluoride; TBS,t-
butyldimethylsilyl; TES, triethylsilane; TFFH,N,N,N′,N′-tetramethylfluoro-
formamidinium hexafluorophosphate; TMSE, trimethylsilylethyl; TSA,
trichostatin A.

Figure 1. Naturally occurring and synthetic HDAC inhibitors, of which
the hydroxamic acid derivatives (TSA15 and SAHA18) are the most
common. Cyclic peptides, such as apicidin,16 and cyclic peptide mimic
1 are another class of potent HDAC inhibitors.
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compound1 does not contain naturalR-amino acids, it may be
less susceptible to biodegradation than the cyclic peptide
inhibitors. We now present the synthesis of compound1 and
describe its inhibitory activity against HDACs.

The amine group ofR-(S)-aminosuberic acid2 was protected
by treatment with Boc2O in dioxane-water (Scheme 1). The
formation of oxazolidinone4 was successfully carried out by
treatment with paraformaldehyde and TsOH.29,30The Boc group
was stable in the presence of TsOH with heating.

The best solvent for the reaction was 1,1,3-trichloroethane,
in which 3 was soluble, and with which water forms an
azeotrope.29 Oxazolidinone4 was coupled with benzyloxy-
hydroxylamine to give protected hydroxamate5. The oxazoli-
dinone of5 was saponified with LiOH.29

The stereoselective synthesis of intermediate7 was reported
previously by Travins and Etzkorn.25 From our modeling, the
size of the Boc group might have hindered efficient binding of
the cyclic peptide mimic into the surface site of the enzyme.
The Boc group of7 was deprotected with 4 M HCl31 because
of its compatibility with the trimethylsilylethyl (TMSE) group,

which could be cleaved if TFA was used to remove Boc
(Scheme 2).32 The amine was blocked with acetyl, as in the
modeled inhibitor, to give8. Liberation of the amine by
hydrogenolysis of the Cbz group of8 furnished the free amine.

Condensation with6 to give 9 was accomplished using (7-
azabenzotriazol-1-yloxy) 1-tripyrrolidino-phosphonium hexa-
fluorophosphate (PyAOP) as the coupling reagent. PyAOP,
which suppresses racemization, is suitable for the coupling of
hindered amino acids, difficult short sequences, and cyclic
systems.33,34 We encountered unexpected difficulty in the
deprotection of the TMSE ester. Various fluoride ion sources
were used to attempt cleavage of the TMSE group, but none of
these reactions afforded the desired intermediate. TMSE esters
are known to be labile to strong acid, so the TMSE of9 was
cleaved by TFA with triethylsilane (TES) as a scavenger, which
simultaneously deprotected Boc.35-37 Exchange of the TFA salt
using HCl in ether did not improve cyclization results in the
next step.

Many attempts were made to produce cyclic intermediate10,
employing different classes of coupling reagents, including the
phosphates diphenylphosphoryl azide (DPPA) and pentafluoro-
phenyl diphenyl phosphate (FDDP), the phosphonium salts
PyAOP, the uronium saltsO-benzotriazol-1-yl-N,N,N′,N′-tetra-
methyluronium hexafluorophosphate (HBTU) andO-(7-aza-
benzo-triazol-1-yl)-N,N,N′,N′-tetramethyluronium hexa-fluoro-
phosphate (HATU), and the acid fluorides formed using cyanuric
fluoride or N,N,N′,N′-tetramethyl-fluoroformamidinium hexa-
fluorophosphate (TFFH).38 However, only DPPA or HATU
coupling produced macrocycle10. DPPA is a widely used
coupling reagent in peptide cyclizations,39 however, in our case,
the highest yield of cyclized10 using DPPA was only 10%.
Comparable yields were obtained with HATU; the best result
was achieved with a 1 hHATU coupling. Long coupling times
using HATU or PyAOP produced no product. Steric hindrance
was not a problem in previous cyclizations with Ala in the
position of theR-aminosuberic acid.26 The instability of the
hydroxamic acid functionality may have contributed to the low
yield of 10. Hydrogenolysis of10 to expose the key hydroxamic

Figure 2. Molecular model of the rim and the active site of the complex
of compound1 (ball and stick with translucent red-orange surface) and
HDLP (lipophilic potential surface with scale at left). Created with
Sybyl 7.1.
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Scheme 2
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acid functionality using the mild catalysts, 5% Pd(OH)2/C40 or
5% Pd/BaSO4,41 produced the target HDAC inhibitor1.

Inhibition of HDAC activity in HeLa nuclear extracts by
compound1 was measured using a fluorescence-based assay.
The IC50 value of1 was 46( 8 nM (Table 1). The IC50 value
for TSA measured in this assay system was 20-fold less potent
than that reported in radioactively-labeled histones HDAC
assays.24 This may indicate that our inhibitor may be more potent
than we report. TheKi value was measured in the same system
to be 13.7( 4.1 nM, and the data fit best to a tight-binding
competitive inhibition model (see Supporting Information). The
Ki value is more robust and may be compared across assay
systems because both the inhibitor and the substrate concentra-
tions are varied. The high efficiency of the designed synthetic
HDAC inhibitor 1 indicates that the hydrophobicity and the
shape of the surface recognition element play an important role
in the formation of the enzyme-inhibitor complex.

We also sought to determine the effect of the rigid macrocycle
on the inhibition of HDACs. Does the design element that is
different from all other HDAC inhibitors contribute to the
affinity of the inhibitor 1? Two compounds,11 and12, were
designed as controls to ascertain the effects of the macrocycle.
Although it was facile to synthesize from existing intermediates,
the uncyclized control11 had two charged groups, ammonium
and carboxylate, that could decrease the affinity for HDACs
hydrophobic surface. The linear peptide12, with both termini
capped as in the inhibitor1, eliminated the effect of charge to
serve as a direct cyclization control. In addition, the peptide12
had only two additional atoms, both hydrogens, compared with
1. Compound11 inhibited nuclear HDACs with an IC50 value
of 8.1 µM, considerably less potent than1, while compound
12had an IC50 value of 167 nM, a 3.6-fold loss of activity (Table
1). The structure of the surface recognition group, in particular,
the conformational restriction and shape of the 12-membered
ring, certainly provides favorable interactions of inhibitor1 with
at least one HDAC found in nuclear extracts.

To demonstrate inhibition of specific HDAC enzymes by
compound1, human HDAC1 and HDAC8 (both class I) were
assayed. Generally, synthetic inhibitors have not shown sig-
nificant selectivity among HDACs. Cyclic peptide inhibitors
have shown the greatest distinctions between HDACs. For
example, cyclic peptides have been shown to have selectivity
for HDAC1 over HDAC6.44 The IC50 values obtained for HDI
1 were 57 nM for HDAC 1 and 231 nM for HDAC8 (Table 1).

Thus, the designed inhibitor showed 4-fold selectivity for
HDAC1 over HDAC8. All of the IC50 values for the designed
inhibitor 1 and controls11 and 12 reported in Table 1 were
measured under the same conditions.

In conclusion, we have designed and synthesized a potent
HDAC inhibitor based on our own cyclic peptide mimic.25 The
key steps of the synthesis included 12-membered ring cyclization
and hydroxamic acid deprotection. The new inhibitor exhibited
4-fold selectivity for HDAC1 over HDAC8. The potency of
the HDAC inhibitor demonstrated that the surface recognition
region plays an important role in the design of new HDAC
inhibitors.
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